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Abstract: We present a fully automatic algorithm to identify fluid-filled 
regions and seven retinal layers on spectral domain optical coherence 
tomography images of eyes with diabetic macular edema (DME). To 
achieve this, we developed a kernel regression (KR)-based classification 
method to estimate fluid and retinal layer positions. We then used these 
classification estimates as a guide to more accurately segment the retinal 
layer boundaries using our previously described graph theory and dynamic 
programming (GTDP) framework. We validated our algorithm on 110 B-
scans from ten patients with severe DME pathology, showing an overall 
mean Dice coefficient of 0.78 when comparing our KR + GTDP algorithm 
to an expert grader. This is comparable to the inter-observer Dice 
coefficient of 0.79. The entire data set is available online, including our 
automatic and manual segmentation results. To the best of our knowledge, 
this is the first validated, fully-automated, seven-layer and fluid 
segmentation method which has been applied to real-world images 
containing severe DME. 
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1. Introduction 

Diabetic retinopathy is the leading cause of blindness among working-aged adults in the 
United States [1]. Among those affected, approximately 21 million people develop diabetic 
macular edema (DME) [2]. DME results from the breakdown of the blood-retinal barrier as 
retinal vascular endothelial and mural cells become damaged from chronic hyperglycemia [3]. 
Retinal hypoxia results in increased production of vascular endothelial growth factors (VEGF) 
and other signaling cascades [3–5]. These further progress DME through mechanisms such as 
cytotoxic damage to retinal fluid transport cells [6–9]. Ultimately, the imbalance between 
vascular leakage and fluid transport leads to retinal edema and vision loss. 

While clinical trials of several treatment modalities have been conducted for therapies for 
DME [10–19], the significant proportion of subjects that fail to respond to any single therapy 
suggests that DME pathophysiology is multifactorial, and unfortunately no consensus yet 
exists for determining which patients are likely to respond to specific therapies. This may be 
due to the absence of a standard method for stratifying patients based on disease mechanisms 
[20, 21]. In recent years, the additional depth-resolved dimension of data provided by optical 
coherence tomography (OCT) imaging has prompted groups to correlate morphological 
patterns of the retina on OCT with DME and vision outcomes [22–26]. For clinical trials, the 
most commonly used quantitative imaging biomarker of DME severity is currently central 
subfield thickness, which does not capture details such as edema volume or changes in 
specific retinal layers. We expect that these parameters will provide valuable prognostic 
information to guide treatment decisions. However, despite the development of automated 
retinal layer segmentation methods applicable to normal eyes or eyes with limited 
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pathological deformation or loss of retinal structures [27–42], most DME studies require 
either manual [22, 24–26, 43] or semi-automatic [44] evaluation of OCT images. Currently 
few automated algorithms exist to quantify morphological or pathological features on images 
with DME [43, 45–51]. 

Furthermore, while averaging-based denoising methods enhance image quality and 
improve the performance of automated image segmentation algorithms [52], they also result 
in drastic increases in image acquisition times, which may not be tolerated by ill or 
uncooperative patients, especially when capturing dense volumetric scans. It is therefore 
desirable to develop automatic OCT segmentation algorithms which can be applied to lower 
quality images captured using fast-image scanning protocols, as these are often required in 
real-world, clinical settings. 

Finally, while a few state-of-the-art algorithms provide combined fluid and layer 
segmentation methods [47, 48, 50], to the best of our knowledge, no fully-automated 
algorithm has been validated to identify all retinal layers and fluid-filled regions. 
Furthermore, there is limited rigorous analysis of layer-specific changes in retinal thickness 
following therapy. As such, the selection of personalized therapeutic strategies for patients 
remains subjective. As a step towards this goal, we present a fully automated algorithm based 
on kernel regression (KR) [53] and our previously described graph theory and dynamic 
programming (GTDP) framework [46, 54, 55] to identify fluid-filled regions and seven retinal 
layers on spectral domain (SD)-OCT images of eyes with DME. In the first phase of 
developing our algorithm, we created KR-based classifiers to estimate fluid and retinal layer 
positions. We then used these classification estimates in the second phase to guide GTDP 
segmentation for a more accurate result. 

In Section 2, we provide an introduction to KR, and in Section 3 we present our new 
general purpose KR-based classification method. We then combine our KR-based 
classification method with GTDP segmentation in Section 4 and describe our implementation 
on OCT images of eyes with DME in Sections 5 and 6. Finally, we validate the performance 
of our algorithm in Sections 7 and 8. 

2. Kernel regression review 

KR is a non-parametric method for deriving local estimates of a function using a kernel that 
weighs the relative importance of nearby points [53]. While traditional KR-based applications 
include image denoising and interpolation [53], deblurring [56], and object detection [57], we 
use KR to improve image classification and segmentation. In this section, we provide an 
overview on the second order iterative Gaussian steering KR method for image denoising as 
introduced and described in detail in [53]. 

2.1 Problem formulation 

Looking at a small patch of P  pixels on a noisy image ,M N×∈ℜI  the intensity py  of a pixel 

can be described by 

 ( ) , 1, , ,p p py f n p P= + = z  (1) 

where [ , ]T
p p pi j=z  is the thp  pixel located at row i  and column j  on I , ( )f ⋅  is an 

unspecified (non-parametric) regression function, and pn  is an independent and identically 

distributed zero-mean noise value at pz . Using this formulation, we would like to obtain a 

local estimate of the regression function ˆ ( )pf z  to generate a denoised image Î  can 

approximate ( )pf z  using the second order Taylor series expansion about a point z  near pz  

following 

 0 1 2( ) ( ) vech ( )( ) ,T T T
p p p pf β  ≈ + − + − − z β z z β z z z z  (2) 
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We next solve for the unknowns 0 ,β  1,β  and 2β  in Eq. (2) using the weighted linear least 
squares formulation [53, 58] following 

 ( ) ( )ˆ ,arg min  = − − 
T

b

b y Zb D y Zb  (3) 

 [ ]1 2where , , , ,
T

Py y y= y        

 0 1 2, , ,
TT Tβ =  b β β   

 1 2
ˆ ˆ ˆdiag ( ), ( ), , ( ) ,P

 = − − − D K z z K z z K z z   

 

1 1 1

2 2 2

1 ( ) vech( )( )

1 ( ) vech( )( )
,

1 ( ) vech( )( )

T T

T T

T T
P P P

 − − −
 − − − =
 
 

− − −  

  

z z z z z z

z z z z z z
Z

z z z z z z

  

and “diag” defines a diagonal matrix and ˆ ( )⋅K  is a linearly normalized kernel function used 

to weigh the P  observations such that 
1

ˆ ( ) 1
P

Pp=
− = K z z . Since Eq. (3) is a linear least 

squares formulation, the solution can be given by Eq. (4), where the first element in b̂  is the 

denoised image ˆ.I  

 1ˆ ( )T T−=b Z DZ Z DZy  (4) 

2.2 Adaptive iterative Gaussian steering kernel 

In order to perform KR as described in Section 2.1, an appropriate kernel must be selected. In 
this section, we describe the popular adaptive iterative Gaussian steering kernel ( )iGSK  [53]. 

To summarize, this kernel can be described as a Gaussian function that is elongated ( )σ , 

rotated ( )θ , and scaled ( )γ  based on the local data to reduce edge blurring. 

To compute the Gaussian steering kernel for a pixel z,  we first smooth the image using a 

linear Gaussian filter with standard deviations of ih  and jh  along the i  and j  dimensions, 

and then we compute the image gradients iG  and .M N
j

×∈ℜG We then calculate the truncated 

singular value decomposition following Eq. (5) [53, 59, 60]. 
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Second, we compute the steering parameters ,σ  ,θ  and γ  as described in Eq. (6), where 

'λ  and ''λ  are parameters that prevent undefined or zero values for σ  and .γ  We then 
denoise z  following Eq. (4) using a linearly normalized version of the kernel defined Eq. (7), 
where h  is the global smoothing parameter. 

 

1

2
12 11 11 12

22 22

' ''
arc tan , , .

' P

λ λθ σ γ
λ

  + + = = =   +   

T S S S

T S
 (6) 

 
2

( ) ( )
( ) exp ,

2

T
p p

GS p h

 − Σ −
− = − 

  

z z z z
K z z  (7) 

 1

cos( ) sin( ) 0
where , , .

sin( ) cos( ) 0
T θ θ σ

γ
θ θ σ −

   
Σ = = =   −   

Θ ΛΘ Θ Λ      

Third, we iteratively improve the denoised image ( 0β̂ ) by recalculating the steering 

parameters and kernel using the denoised image gradients ( 1β̂ ) [53]. 
An example image and its Gaussian steering KR denoised result are shown in Fig. 1(a) 

and 1(f), respectively. Figure 1(c) and 1(e) are the iterative Gaussian steering kernels for Fig. 
1(b) and 1(d), respectively. The kernel in Fig. 1(c) is wider and more isotropic since its 
corresponding image patch does not contain strong edges, while the kernel in Fig. 1(e) is 
narrower and oriented along the image edge. In Fig. 1(f), the regions external to the retina 
(black) were not denoised with the exception of a padded boundary surrounding the retina. 
The thickness of this boundary is half the kernel size to encapsulate all pixels required for 
feature vector computation in Sections 3.2 and 5.8. Parameter values used to generate Fig. 
1(f) were chosen empirically using the training data set and include a kernel size of 73.7 × 

147.4 µm (11 × 11 pixels, P  = 121), 3 iterations for ˆ
iGSK , 1ih = , 3jh = , 3h = , ' 0.1λ = , 

and '' 1.λ =  

 

Fig. 1. Second order iterative Gaussian steering KR of an SD-OCT image with DME. a) 
Automatically flattened image, b,d) zoomed-in images of the pink and green boxes in (a), c,e) 
Gaussian steering kernels used to denoised the central pixel of (b) and (d), and f) KR-denoised 
image of (a). In (f), regions external to the retina (black) were not denoised with the exception 
of a padded boundary surrounding the retina required for feature vector computation. 
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3. Kernel regression-based classification 

In this section, we integrate KR with supervised classification [61, 62] to classify noisy 
images. The following subsections describe our novel, general purpose KR-based 
classification method. Specific application of this method for segmenting retinal layers is 
discussed in Sections 5 and 6. 

3.1 Steering kernel regression estimation 

Since pixels within an image are individually classified, the presence of noise worsens 
classification results. Thus, the first step is to use the KR method described in Eq. (4) to 
denoise the image and obtain: 1) direct estimates for the noise-free first and second 

derivatives ( 1β̂  and 2β̂ ), and 2) adaptive directional kernels ˆ( )K  for each pixel. 

3.2 Computing features 

To classify a pixel z , the pixel needs associated descriptors called features. Each feature v  is 
a scalar value used to describe the pixel, and L  features comprise a feature vector 

[ ]1 2, , , .Lv v v= v  Basic features include pixel intensity, gradient, and location. Other feature 

types include textural features such as Laws’ Texture Energy Measures [63, 64]. 
To mitigate the effects of noise on feature computation, we perform weighted averaging. 

Since the steering kernels in Section 2.2 adapt to the shape of the underlying structure, we use 
the kernels from Section 3.1 to filter the features following 

 
1

ˆˆ ( ) ( ) ( ),
P

l l p p
p

v v
=

=z z K z - z  (8) 

where ( )l pv z  is the thl  feature for pixel pz  and ˆ ( )lv z  is the thl  (now denoised) feature for 

pixel z.  We also use the kernels themselves as features (e.g. kernel height, width, and area) to 
reveal more indistinct information. Specific feature examples are defined in Section 5.8. 

3.3 Defining the true (training) classes 

In supervised classification, a set of classes (categories) { } 1

K

k k
c

=
=c  is pre-defined for a given 

classifier [62]. Given a training data set, we manually identify the true class c  for each 
training pixel z  such that c .∈c  Specific examples of these classes are given in Section 5.2. 

3.4 Defining the classifier function 

For an image I,  we define a classifier ( )ϕ ⋅  which estimates the class ĉ ∈c for a pixel z  
following 

 ˆ ( ).c ϕ= v  (9) 

Provided that the training data set is composed of R  total training pixels, we first combine 

the feature vectors for all R  pixels into the feature vector set 1 2, , , ,
TT T T R L

R
× = ∈ℜ V v v v  

where rv  is the feature vector for the thr  training pixel. For each class kc , we then create a 

feature vector subset ⊆kV V  where { } kR L
kc c ×= ∈ = ∈ℜkV v V |  and kR  is the number of 

training pixels with kc  as the true class. From this definition, it can be seen that 
1

K

kk
R R

=
= . 

We next define the classifier function used to estimate the class. To take into consideration 
the typical spread of feature values, we use a weighted negative Gaussian classifier function 
following Eq. (10), where 1

k
L×∈ℜμ  is the mean feature vector across the training feature 
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vector subset ,kV  1 L
kε ×∈ℜ  is the element-wise reciprocal of the variance feature vector for 

,kV  ×∈ℜ1 Lω  is a set of constant weights used to alter the relative importance of features, and 
  is the Hadamard product, an element-wise multiplication operation for vectors and 
matrices. Selection of these weights is described in Section 3.5. 

 ( ) ( )
1

21
( ) arg min 1 exp

2

T

wNG k k k k k
k

cϕ ε ε
 

   = − − −             

   v ω v μ ω v μ (10) 

3.5 Weighted sequential forward feature selection 

Since not all features in v  may be useful for predicting the true class c , we reduce the 
dimension of v  by defining a subset ' ⊆v v  of length 'L L≤  containing the most relevant 
features [65–67]. We achieve this by performing weighted sequential forward feature 
selection (wSFFS), a variation of the classic SFFS method [66] that simultaneously selects 
features and their corresponding weights. In the classic SFFS method, 'v  begins as a null set 
and features are added to it sequentially [66] by minimizing a predefined criterion function 

( )E ⋅  (e.g. misclassification rate). 
A limitation of the SFFS method is that it weighs each feature equally. As a result, we use 

the wSFFS method to select features along with their optimal weight. Given a set of A  
possible weight values [ ]1 2, , , ,Aa a a= a  we create a new set of weighted feature vectors 

[ ]1 2, , , .R LA
A Aa a a ×= ∈ ℜV V V V  We then perform SFFS on AV  to find the most relevant 

weighted feature. After sequentially adding weighted features, the result is a subset of features 
'v  and corresponding weights [ ]1 2 ', , , L' ω ω ω= ω  where the thl  weight l .ω ∈a  We 

subsequently use this new set of reduced features and weights in Eq. (10) to classify the pixel 
in place of the full, non-weighted feature vector .v  

Finally, to reduce classifier overfitting, we use K-fold cross-validation [68] during feature 
selection. We also increase the classification accuracy by using K-means clustering [69] to 
divide V  into K  clusters. We then perform wSFFS on each of the clusters to generate K  
sets of selected feature vectors and weights. When classifying a pixel, the set that minimizes 
the criterion function is used to determine the final class. 

4. Classification-based GTDP segmentation 

To improve the KR-based classification method from Section 3, we apply our GTDP 
segmentation framework introduced in [54] to more accurately isolate class boundaries. This 
section provides an overview of our GTDP method and describes how the classification 
results can be used to both improve and simplify GTDP segmentation. 

4.1 GTDP layer segmentation review 

We represent an image M N×∈ℜI  as a graph, where each pixel is a node on the graph and 
adjacent nodes are connected by edges. To create a path preference, we assign positive 
weights to the edges based on features such as image intensity or gradient, where ultimately 
the lowest weighted path is preferred. For example, to segment the darkest path across an 
image, we assign weights based on image intensity, where the weight abw  of the edge 

connecting nodes a  and b  following 

 min ,ab a bw I I w= + +  (11) 

where nI  is the intensity of I  at node n  and minw  is a positive number specifying the 
minimum weight of an edge since a weight equal to zero indicates two unconnected nodes. 
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We also specify that ab baw w=  for all node pairs, as this generates an undirected graph with 
half as many weight values. 

To segment a horizontal layered structure, we add an additional node to either side of the 
graph to automatically initialize the start and end nodes of our path. The additional node on 
the left is connected to all nodes in the leftmost column of the graph, and the right additional 
node has edges connecting it to all nodes in the rightmost column. These additional edges are 
assigned a weight of min .w  We then apply Dijkstra’s algorithm [70] to find the shortest path 
from the start node to the end node, which corresponds to our desired segmentation. For more 
details referring to our GTDP segmentation algorithm, refer to [54, 55]. 

4.2 Classification-based search region limitation 

For scenarios in which multiple similar features are to be segmented within a given image 
(e.g. retinal layer boundaries), the graph may be isolated to a smaller region containing only 
one of the features. This may be done using a priori knowledge of the feature to segment. For 
example, to segment the inner plexiform layer (IPL) / inner nuclear layer (INL) boundary, we 
can set all edge weights in the outer half of the retina to zero. This prevents the algorithm 
from segmenting outer retinal features such as the outer segment (OS) / retinal pigmented 
epithelium (RPE) boundary. Implementation examples of these types of search region 
limitation can be found in [45, 46, 54, 55, 71]. 

To simplify and reduce the complexity of search region limitation, we can modify the 
edge weights of the graph to emphasize a particular region. For example, let us extend our 
example in Section 4.1 to segment the darkest path across an image. Given an image I  and 
its classification result ×∈ℜM NC  where [ , ]i j ∈C c  is the estimated class of [ , ]i jI , we 

would like to segment the darkest path across the portion of the image where [ , ] .ki j c∈C  To 

do this, we compute the edge weights for { },n a b=  following 

 { } min# ,ab a b n kw I I n C c w= + + ≠ +  (12) 

where nC  is the class at node n  and { }# n kn C c≠  represents the number of nodes not 

equal to .kc  From Eq. (12), it can be seen that edges connecting nodes with class kc  are given 
lower weights than edges connecting nodes assigned to other classes. The advantage of this 
method is that far fewer a priori rules are required to isolate the desired region, as the 
classification method automatically generates estimates of region locations. Furthermore, hard 
limits are not set on the search region, as portions of the graph are not excluded. 

5. Training the DME classifier 

In this Section, we describe an implementation of our KR-based classification method to 
generate a DME classifier to identify fluid-filled regions and seven retinal layers on SD-OCT 
images of eyes with DME. An outline of our method is shown on the left side of Fig. 2. All 
parameter values were either selected empirically based on the training data set or were 
extensions from our previous segmentation algorithms [45, 54, 55]. 

5.1 DME training data set 

To learn our DME classifier, we obtained training data separate from our validation data set. 
We used the Duke Enterprise Data Unified Content Explorer search engine to retrospectively 
identify patients within the Duke Eye Center Medical Retina practice with a billing code for 
DME (ICD-9 362.07) associated with their visit. An ophthalmologist then identified six 
patients imaged in clinic using the standard Spectralis (Heidelberg Engineering, Heidelberg, 
Germany) 61-line volume scan protocol with severe DME pathology and varying image 
quality. Averaging of the B-scans was determined by the photographer, and ranged from 9 to 
21 raw images per averaged B-scan. The volumetric scans were Q = 61 B-scans × N = 768 
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A-scans with an axial resolution 3.87ir =  µm/pixel, lateral resolution ( )jr  ranging from 

11.07 – 11.59 µm/pixel, and azimuthal resolution ( )kr  ranging from 118 – 128 µm/pixel. 

 

Fig. 2. Flowchart of the KR-based classification and GTDP-based segmentation algorithm for 
identifying fluid-filled regions and eight retinal layer boundaries on images with DME 
pathology. 

5.2 Target classes 

To generate the target classes for classifier training, we manually segmented fluid-filled 
regions and semi-automatically segmented all eight retinal layer boundaries following the 
definitions in Fig. 3. This was done for 12 B-scans within the training data set (two from each 
volume). The B-scans selected consisted of six images near the fovea (B-scan 31 for all 
volumes) and six peripheral images (B-scans 1, 6, 11, 16, 21, and 26, one for each of the six 
volumes). We then used the manual segmentations to assign the true class for each pixel, with 
a total of eight possible classes defined in Table 1 and the classified result shown in Fig. 4(a). 

 

Fig. 3. Target retinal layer boundaries and fluid to segment on an SD-OCT B-scan of an eye 
with DME. A flattened version of the image without markings is shown in Fig. 1(a). 
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Table 1. DME classes 

Class Description Color

1c  Fluid Blue 

2c  NFL Light Blue 

3c  GCL-IPL Cyan 

4c  INL Green 

5c  OPL Yellow 

6c  ONL-ISM Orange 

7c  ISE Red 

8c  OS-RPE Dark Red 

 

Fig. 4. KR-based classification of retinal layers and fluid-filled regions. a) Manual 
classification of the image in Fig. 1(a) with the classes defined in Table 1. b) Automatic 
classification using the merged DME classifier. 

5.3 Pre-processing the image 

Prior to training the classifier, we perform image pre-processing steps for all B-scans within a 
volume following our validated DME algorithm described in [45]. To summarize, we first 
remove Spectralis registration boundaries by replacing them with the mirror image of the 
valid image regions. To standardize the images following [45] and [55], we resize the image 
to a lateral and axial resolution of 13.4jr = µm/pixel and 6.7ir = µm/pixel, respectively, and 

then linearly normalize the image to range from 0 to 1. 

5.4 Flattening the retina 

Next, we flatten the curved retina to obtain a shorter path for GTDP segmentation. Following 
[45], we achieve this by first heavily filtering each image using a 40.2 µm × 80.4 µm 
Gaussian with 73.7σ = µm × 147.4 µm. We then threshold the filtered image at 0.5 to extract 
the inner and outer hyper-reflective complexes. We refine the hyper-reflective mask by 1) 
opening any gaps in the clusters using a 33.5 µm × 40.2 µm rectangular structuring element, 
2) removing all clusters less than 0.018 mm2 in size, and 3) closing any remaining gaps using 
the same structuring element. Using GTDP, we segment the boundaries of the hyper-
reflective complexes as described in [55] which obtains estimates at the middle of the ONL 
and RPE. 

Unlike our previous algorithms which flattened the retina on B-scans individually [45, 54, 
55], in this algorithm we perform the above steps for all images in the volume to generate 2D 
map estimates ( Q N×∈ℜ ) of the OPL and RPE surfaces. Using the map of the RPE, we linearly 
interpolate any missing A-scans and B-scans. We then search for outliers by computing the 
absolute second derivative in the vertical direction and isolating all values greater than three 
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standard deviations above the mean. Outlier clusters within each B-scan are then linearly 
interpolated, and the map of the RPE is smoothed using a 500 µm Gaussian filter with 

250σ = µm. Finally, for each B-scan, we circularly shift the A-scans until the RPE estimate 
is flat. Since the ONL boundary no longer aligns with the flattened RPE and image, we also 
flatten the ONL using the same flattening transformation. 

5.5 Segmenting the total retina 

To isolate the retina from the vitreous and choroid, we implement our GTDP layer 
segmentation framework described in Section 4.1 to segment the ILM using the dark-to-light 
gradient weights computed following 

 ( ) minLinNorm , 0, 1 ,DL DL
ab a bw G G w= − − +  (13) 

where DL
nG  is the maximum of the dark-to-light vertical (filter [1, 1]T= − ) and diagonal 

gradients of I  at node n  after filtering the image using a Gaussian (20.1 µm × 67 µm, 

13.4σ = µm × 26.8 µm), 5
min 1 10 ,w −= ×  and ( )LinNorm , ,x y z  is a linear normalization of 

x  to range from y  to .z  While using Dijkstra’s algorithm to segment the ILM, we limit the 
search region to span from the top of the image down to the RPE estimate generated in 
Section 5.4. To ensure that hyper-reflective spots or detachments internal to the ILM are not 
segmented, we re-segment the boundary using the weights in Eq. (14) where abD  is the 

Euclidean distance from node a  to node .b  We also limit the search region to span from the 
initial ILM estimate to 67 µm below the ILM. 

 ( ) ( ) minLinNorm , 0, 1 LinNorm , 0, 0.1DL DL
ab a b abw G G D w= − − + − +  (14) 

To segment BM, we compute weights following Eq. (15) where LD
nG  is the light-to-dark 

equivalent of DL
nG  and nI  is the intensity of the filtered image at node n . We also set the top 

boundary of the search region to the mean location between the ONL estimate and 100.5 µm 
below the ILM, and we set the bottom boundary to the bottom of the image. 

 
( ) ( )
( ) min

LinNorm , 0, 1 LinNorm , 0, 0.4

LinNorm , 0, 0.4

LD LD
ab a b ab

a b

w G G D

I I w

= − − + − +

− − +
 (15) 

5.6 Locating the fovea 

To compute the features in Section 5.8 and gauge the location of the optic nerve and merged 
retinal layers, we first identify the location of the fovea on the volumetric macular scan. Upon 
segmenting the ILM and BM across all B-scans, we locate the fovea based on the 2D total 
retinal thickness (TRT) map computed by subtracting the ILM from BM. To do this, we first 
filter the TRT map ( Q N×∈ℜ ) using a Gaussian (120 µm × 89.8 µm and σ = 18.95 µm × 85.8 
µm). We then narrow our search region to the central 3 mm of the volumetric macular scan 
and find all local extrema with a depth greater than 13.4 µm. If the extremum with the lowest 
or highest TRT resides closest to the center of the volume, then we assign that location as the 
fovea. Otherwise, we create a summed voxel projection (SVP) by summing pixels ranging 
from the ILM to 33.5 µm below the ILM across all B-scans. As with the TRT, we smooth the 
SVP, locate the extrema, and computed distances from the fovea. Looking at the five extrema 
closest to the center of the volume, we set the extremum with the lowest intensity as the 
fovea. 
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5.7 Kernel regression-based denoising 

We next perform iterative Gaussian steering KR on each training image as described in 

Section 2 to 1) extract the normalized kernels ˆ
iGSK  for every pixel z  in the retina, and 2) 

recover b̂  defined in Eq. (4) which contains the denoised image and its first and second order 
derivatives. Parameter values are listed in Section 2.2, and since only the pixels within the 
retina need to be classified, we do not denoise pixels within the vitreous and choroid. 

5.8 Computing DME training features 

To learn the DME classifier, we computed feature vectors for the 12 training images manually 
segmented in Section 5.2. We generated a total of 22 features ( 1 22v v− ) for each vector, and 
only pixels within the retina were processed. The nine KR-based features are defined in Table 
2, the four position-related features are listed in Table 3, and the nine Laws’ Texture Energy 
Measure features [63, 64] are listed in Table 4. We then enhance the texture features in Table 
4 using Eq. (8) and further enhance all features except 7 13v v−  using adaptive histogram 
equalization [72]. Finally, we normalize all features to match the range of the training 
features. Figure 5 shows Laws’ 5 5TE E  feature computed with and without KR-based 
denoising. As can be seen from Fig. 5, utilizing KR reduced the amount of noise present 
within the feature. 

Table 2. Kernel regression-based DME training features 

Definition Description 

1
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∂
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∂
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Table 3. Position-based DME training features 

Definition Description

10

right eye

left eye

,

,

fov

fov

j j
v

j j

−
=

−





 

 
 

Horizontal distance from the fovea, where fovj  is the foveal 

A-scan 

11

ILM

BM ILM

i i
v

i i

−
=

−
 

Vertical distance from the fovea, where ILMi  and BMi  are the 

vertical positions of the ILM and BM for column j determined 
in Section 5.5. 

2 2

12
[ ( )] [ ( )]

j fov k fov
v r j j r k k= − + −  

Radial distance from the fovea, where jr  and kr  are the 
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Table 1. Laws’ texture training features 
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Fig. 5. Laws’ 5 5
T

E E  texture feature computed for the image in Fig. 1(a) with (a) and without 
(b) KR-based denoising. Both feature images have been enhanced using adaptive histogram 
equalization. 

5.9 Selecting relevant features and weights 

To select the most relevant features and weights for fluid and layer classification, we 
implemented our wSFFS method described in Section 3.5. We used ten-fold cross-validation 
[73] during this process and adjusted selection parameters until we achieved the desired 
classification result. During feature selection, we set the maximum number of features in 'v  
to 10, a  ranged from 0.1 to 1 in 0.1 increments, used the classifier function defined in Eq. 
(10), and allowed a maximum of three clusters. 

Next, we defined three types of DME classifiers: 1) a layer classifier ( lϕ ) for segmenting 

layer boundaries, 2) a fluid classifier ( fϕ ) for identifying fluid-filled regions, and 3) a layer + 

fluid classifier ( l fϕ + ) used to remove false positive fluid detected by the fluid classifier. For 

each classifier type, we defined the criterion function following Eqs. (16) and (17), where 
'

1 , , ,
TT T T R L

R' ' ' × = ∈ℜ 2V' v v v  is the set of reduced feature vectors for all training data, rc  

is the true class for ,r'v  and kc  is the class that is being analyzed. For the fluid classifier, 
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1k =  so only the fluid class is evaluated by the criterion function. For the layer classifier, 
2, ,8k =   so only the layers are analyzed, and 1, ,8k =   for the layer + fluid classifier so 

all classes are analyzed. The resulting feature and weights are shown in Table 5 and Fig. 6, 
where lϕ  is a 3-cluster classifier, and fϕ  and l fϕ +  are 1-cluster classifiers. 
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Table 5. Selected DME classifier features and weights 

Layer Fluid Layer + Fluid
Feature Weight Feature Weight Feature Weight

v11 1.5 v1 2.7 v11 1.4
v12 0.9 v3 1.9 v13 0.8
v10 0.8 v11 1.8 v1 0.5
v6 0.8 v13 1.0 v14 0.5
v13 0.6 v17 1.0 v10 0.3
v14 0.5 v9 0.6 v12 0.3 
v1 0.4 v9 0.3
v15 0.3 v15 0.2
v7 0.3 v7 0.2

 

Fig. 6. Visual example of features selected for the DME classifiers. a-l) Features computed for 
the image in Fig. 1(a). 
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5.10 Merged DME classifier 

Given three classification images lC , fC , and M N
l f

×
+ ∈ℜC  output by the layer, fluid, and 

layer + fluid classifiers developed in Section 5.9, we next merge the results to create a single 
classification result. We achieve this by first setting all regions in fC  and l f+C  to zero if it is 

not classified as fluid. Next, we remove all fluid clusters in fC  that do not overlap with the 

fluid in l f+C . We also examine the shape of the fluid clusters and remove any that are 

abnormally wide and thin. More specifically, if a cluster is more than 536 µm wide and less 
than 33.5 µm tall, then we consider the cluster as a false positive. Finally, we generate the 
merged classification image C  by setting l=C C  and subsequently assigning all pixels in C  

to 1c  (fluid) where 0f >C . Figure 4 shows an example training image comparing the true 

classes (Fig. 4(a)) to the automatically generated classes output by our algorithm (Fig. 4(b)). 

6. Automatic classification-based GTDP segmentation algorithm for DME 

We next leveraged the classification results from Section 5 to create a fully automatic GTDP 
segmentation algorithm to identify fluid-filled regions and seven retinal layers on SD-OCT 
images with DME. An outline of the algorithm is shown on the right side of Fig. 2 and 
explained in detail in the following subsections. 

6.1 Pre-processing, flattening, and segmenting the retina 

We pre-process all images in a volumetric scan, flatten the entire retina based on estimates of 
the RPE, and use GTDP to segment the ILM and BM following Sections 0 – 5.5. 

6.2 Classification of fluid and retinal layers 

To classify the images, we locate the fovea and perform second order iterative Gaussian KR 
as described in Sections 5.6 and 5.7, respectively. We then compute the 12 features listed in 
Table 5 for all pixels residing within the retina following Section 5.8. Finally, we classify the 
feature vectors using the three classifiers from Section 5.9, and merge the results following 
Section 5.10 to generate the final image C  containing the fluid and layer class estimates. 

6.3 GTDP segmentation of intraretinal layers 

To segment the six remaining intraretinal layer boundaries, we begin by creating a binary 
mask of the OS/RPE boundary based on the layer classification image .lC  To generate the 

binary image ,B  we set all pixels from the bottom of the classified ISE layer to the bottom of 
the classified RPE layer to 1. We then segment the OS/RPE boundary using the weights in 
Eq. (18) and a search region extending from the ILM to BM, where nB  is the value of B  at 

node ,n  max 0.5,d =  and max 0.5.b =  Furthermore, for Eq. (18) and for all subsequent weight 

calculations, we compute DL
nG  using the denoised image 0β̂  generated in Section 6.2. 

 
( ) ( )
( )

max

max min

LinNorm , 0, 1 LinNorm , 0,

LinNorm , 0,

DL DL
ab a b ab

a b

w G G D d

B B b w

= − − + − +

− − +
 (18) 

Next, we segment the ISM/ISE by setting all pixels in B  ranging from the bottom of the 
classified ONL-ISM to the bottom of the classified ISE. We then segment the boundary using 
Eq. (18) where max 0.5,d =  max 0.1,b =  and the search region extends from halfway between 
the classified ILM and OS/RPE to13.4 µm above the OS/RPE. 

The third intraretinal boundary we segment is the NFL/GCL. Since the ILM is oftentimes 
significantly brighter and creates a pseudo light-dark transition within the NFL, we take the 
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pixel-wise square root of Î  and use the resulting image to compute the light-to-dark gradient 
image of the NFL/GCL boundary, generating sqLDG . We then compute the graph weights 
following 

 
( ) ( )
( ) min

LinNorm , 0, 1 LinNorm , 0, 0.1

LinNorm , 0, 0.1 ,

sqLD sqLD
ab a b ab

a b

w G G D

B B w

= − − + − +

− − +
 (19) 

where sqLD
nG  is the light-to-dark gradient of sqLDG  at node n  and values in B  ranging from 

the middle of the classified NFL to the bottom of the GCL-IPL are set to 1. We then set the 
search region to range from the ILM to the ISM/ISE. However, since the thickness of the NFL 
varies more than all other layers and is oftentimes very faint on the temporal side, we provide 
additional search region steps as follows: 1) the bottom boundary for A-scans less than 1 mm 
from the fovea is set to the ILM plus 40.2 µm times the distance from the fovea (in mm), 2) 
the top boundary for A-scans between 1.5 and 3 mm nasal to the fovea is set to the ILM plus 
6.7 µm times the distance from the fovea, and 3) the bottom boundary for A-scans greater 
than 1 mm temporal to the fovea is set to a third of the distance between the ILM and 
ISM/ISE. 

Next, we segment the OPL/ONL using Eq. (20) where max 0.5,b =  max 0.5,i =  and the 
binary image is set to 1 between the top of the classified OPL and the middle of the classified 
ONL. We then set the top of the search region to either the NFL/GCL plus the NFL thickness, 
or 67 µm below the NGL/GCL, whichever is closer to the NFL/GCL. Finally, the bottom of 
the search region is set to the ISM/ISE. 

 
( ) ( )
( ) ( )max max min

LinNorm , 0, 1 LinNorm , 0, 0.1

LinNorm , 0, LinNorm , 0,

LD LD
ab a b ab

a b a b

w G G D

B B b I I i w

= − − + − +

− − + + +
 (20) 

To segment the INL/OPL, we set values in B  extending from the top of the classified INL 
to the bottom of the classified OPL to 1. We also morphologically dilate the edges of the fluid 
in C  using a disk structuring element with a radius of 2 pixels. The dilated edges are also set 
to 1 in B . We then use Eq. (18) with max 0.1d =  and max 0.1b =  to compute graph weights, 
and we limit the search region extent from 13.4 µm below the NFL to the OPL/ONL. 

With the IPL/INL being the last boundary to segment, we set values in B  ranging from 
the bottom of the classified GCL-IPL to the bottom of the INL to 1. To discourage the 
IPL/INL from running through fluid regions, we set fluid regions to a negative value in .B  
We then compute graph weights following Eq. (20) with max 0.4b =  and max 0.i =  Finally, we 
limit the search region to range from the a third of the distance between the NFL/GCL and 
INL/OPL, to the INL/OPL. 

7. Algorithm validation 

7.1 DME validation data set 

We obtained our validation data set by identifying ten patients with DME that were not 
included in the training data set. The method for selecting these data sets is described in 
Section 5.1, with the difference that the images had to be of adequate quality (i.e. layer and 
fluid boundaries needed to be visible). The image acquisition parameters were consistent with 
the training data set, and lateral and azimuthal resolutions ranged from 10.94 – 11.98 
µm/pixel and 118 – 128 µm/pixel, respectively. We made the entire data set available online, 
including the training and validation data sets and their corresponding automatic and manual 
segmentation results. This data set can be found at 
www.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm. 
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7.2 Automatic versus manual segmentation 

Two ophthalmologists manually segmented all fluid-filled regions and eight retinal layer 
boundaries using custom software (DOCTRAP V50.9) for 110 images (11 per patient). The 
images selected consisted of the foveal scan fovk  and scans fovk  ± 2, fovk  ± 5, fovk  ± 10, fovk  

± 15, and fovk  ± 20. The graders worked in a dimly lit room alone and free of other 

distractions. A tablet computer was used to allow the grader to utilize a stylus to mark or draw 
the segmentation as if writing on a flat surface. While marking the images, the 
ophthalmologists were able to use either a freeform (drawing) or connect-the-dots (piecewise 
cubic-interpolated clicking) method. They also had the options to hide/show other markings, 
erase/add/correct markings, and pin/unpin adjacent layer boundaries. The graders first 
segmented the retinal layers using predominantly the connect-the-dots function with freehand 
segmentation reserved for particularly complex contours such as those encountered when 
retinal layers are severely disrupted by edema. In cases where boundaries between layers were 
completely obscured or lost, the graders made their best estimate. The retinal layer 
segmentation could then be hidden to allow segmentation of edema without influence by 
retinal layer segmentation. The graders segmented retinal edema using the freehand function, 
and all edema was segmented whether it was cystic or non-cystic in nature. Cysts were 
segmented individually, whereas non-cystic edema was segmented according to the contour 
of thickening and the perceived location of the edema with respect to the retinal layers. The 
expert graders (MJA and PSM) are both fellowship-trained medical retina specialists on the 
faculty at the Duke Eye Center. They each have over five years of clinical experience working 
with diabetic subjects and reading OCT images. Both have prior experience with manual OCT 
grading and have each published two manuscripts involving OCT analysis and grading. 
Outside consultation and discussion between graders was prohibited. 

To validate our algorithm, we compared our fully automatic KR + GTDP segmentation to 
our pre-determined primary grader (MJA) within a 6-mm lateral radius from the fovea. We 
then measured the Dice coefficient [74, 75] for retinal layer and fluid classification. We also 
measured the mean layer thickness difference between automatic and manual segmentation 
for each B-scan, and computed the absolute mean error across all 110 B-scans. To realize the 
improvement of our new KR + GTDP segmentation algorithm compared to existing methods 
that do not consider the presence of fluid, we also evaluated the performance of our GTDP 
algorithm developed for normal eyes on the DME data set. This Normal GTDP algorithm is a 
modified version of our 2010 algorithm described in [54], where enhancements had been 
made following our 2010 publication to improve segmentation results and address issues such 
as registration artifacts seen on Spectralis SD-OCT images. Finally, we computed the mean 
Dice coefficient and thickness difference for each layer for a given patient and performed the 
Wilcoxon matched-pairs test across all patients for each automated algorithm compared to the 
inter-manual results, as well as the Normal and DME algorithms compared to each other. 

8. Experimental results 

Figure 7 (right) shows the qualitative results of our automatic KR + GTDP segmentation 
algorithm for varying amounts of edema, including cases where there was no fluid present 
(Fig. 7(f)). This is in comparison to the automatic GTDP results using the normal algorithm 
(Fig. 7, middle). Table 6 and Table 7 report quantitative results comparing automatic and 
manual segmentation, with an overall mean Dice coefficient and thickness difference of 0.78 
± 0.10 and 5.22 ± 5.81 µm, respectively, for our proposed KR + GTDP algorithm. This is 
comparable to the inter-manual results which yielded an overall mean Dice coefficient and 
thickness difference of 0.79 ± 0.09 and 4.30 ± 2.38 µm, respectively. On the other hand, our 
popular GTDP algorithm developed for eyes without pathology had mean overall values of 
0.70 ± 0.19 and 11.39 ± 19.11 µm. Table 8 shows the resulting p-values when comparing a) 
the mean patient Dice and thickness difference values between the automated and gold 
standard methods, to b) the inter-manual (Columns 1 and 2) or Normal GTDP (Column 3) 
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results. An insignificant result against the inter-manual results indicates that the automated 
algorithm performed comparably to a second expert grader, while a significant result against 
the Normal algorithm indicates an improvement in the segmentation algorithm. Finally, Fig. 8 
is an example comparison of the segmentations completed by the algorithm (Fig. 8(b)) and by 
the two graders (Fig. 8(c) and 8(d)), and Fig. 9 shows example errors in automatic 
segmentation (Fig. 9, bottom) when compared to a manual grader (Fig. 9, middle). The 
performance of the algorithms in MATLAB (MathWorks, Natick, MA) were 1.8 seconds per 
image on average for the Normal GTDP algorithm and 11.4 seconds for the KR + GTDP 
algorithm. This is in comparison to the 5.5 minutes required per image for manual 
segmentation. 

 

Fig. 7. Qualitative results for the identification of fluid and eight retinal layer boundaries on 
SD-OCT images of eyes with DME. a-c) Images with significant, moderate, and no visible 
fluid, respectively, d-f) their corresponding automatic segmentation result using the GTDP 
algorithm developed for normal eyes, and g-i) the automatic KR + GTDP segmentation result. 

Table 6. Dice coefficients for DME segmentation 

Class 
Inter-Manual 

Normal GTDP
Automatic vs Manual 

DME KR + GTDP 
Automatic vs Manual 

Mean SD Mean SD Mean SD 
Fluid 0.58 0.32 N/A N/A 0.53 0.34 
NFL 0.86 0.06 0.78 0.19 0.86 0.05 
GCL-IPL 0.89 0.05 0.74 0.25 0.88 0.06 
INL 0.77 0.07 0.63 0.22 0.73 0.08 
OPL 0.72 0.08 0.63 0.19 0.73 0.09 
ONL-ISM 0.87 0.06 0.86 0.09 0.86 0.08 
ISE 0.85 0.05 0.85 0.06 0.86 0.05 
OS-RPE 0.82 0.05 0.79 0.06 0.80 0.06 

Table 7. Layer thickness differences for DME segmentation in µm 

Class 
Inter-Manual 

Normal GTDP
Automatic vs Manual 

DME KR + GTDP 
Automatic vs Manual 

Mean SD Mean SD Mean SD 
Fluid N/A N/A N/A N/A N/A N/A 
NFL 4.02 3.30 25.83 50.42 3.68 4.13 
GCL-IPL 4.91 6.74 11.90 20.33 4.84 5.12 
INL 6.04 8.48 9.91 20.40 7.90 11.92 
OPL 4.21 3.74 6.50 5.90 6.35 6.11 
ONL-ISM 4.93 5.25 19.58 32.29 6.80 8.37 
ISE 3.03 2.11 2.53 2.00 2.88 2.28 
OS-RPE 2.99 2.30 3.51 2.39 3.61 2.47 
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Table 8. Wilcoxon matched-pairs test p-values 

Class 
Normal GTDP

vs Manual 
DME KR + GTDP

vs Manual 
DME KR + GTDP 
vs Normal GTDP 

Dice Thickness Dice Thickness Dice Thickness 
Fluid N/A N/A 0.432 N/A N/A N/A 
NFL 0.014* 0.014* 0.695 0.557 0.049* 0.027* 
GCL-IPL 0.002* 0.004* 0.432 0.557 0.010* 0.006* 
INL 0.006* 0.557 0.027* 0.275 0.014* > 0.999 
OPL 0.002* 0.037* 0.322 0.084 0.004* 0.922 
ONL-ISM 0.557 0.010* 0.193 0.049* 0.275 0.004* 
ISE 0.695 0.084 0.322 0.275 0.770 0.232 
OS-RPE 0.106 0.275 0.846 0.065 0.193 0.695 
* indicates statistical significance

 

Fig. 8. Automatic and manual segmentation comparison. a) An SD-OCT B-scan with DME 
pathology, b) the fully automatic segmentation result, and c-d) the segmentation results 
completed by two different graders. 

 

Fig. 9. Automatic fluid detection errors. Top) Cropped portions of SD-OCT B-scans with 
DME, middle) manual segmentation of fluid-filled regions by a grader, and bottom) automatic 
fluid-filled classification. a) An image with hyper-reflective deposits, b) a dim image with a 
hyper-reflective outlier, and c) a high quality image. 
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9. Discussion 

Despite having two qualified graders to manually mark the validation data sets, their results 
did not overlap with high accuracy (Table 6). This is likely due to the lower image quality and 
severe DME pathology present within the data set, as we deliberately chose to use real-world, 
clinical images in our study. While not necessarily a representative example for all graded 
images, Fig. 8 shows the challenge faced by both expert and automatic graders when 
confronted with an image from clinical practice that is affected by severe DME. The massive 
retinal thickening and punctate inner retinal hyper-reflectivity results in shadowing and loss of 
detail in the outer retinal layers. While some cysts are well-delineated hypo-reflective spaces 
in Fig. 8(a), others are minimally hypo-reflective compared to the surrounding tissue and 
create a judgment call for the grader. In this case, one grader perceived some non-cystic 
edema (Fig. 8(d)) while the other identified primarily cystic edema (Fig. 8(c)). The subjective 
nature of complex image segmentation by humans is thus one of the major obstacles to 
generating robust imaging-based biomarkers and is the primary unmet scientific and clinical 
need that is addressable using automated algorithms. 

Despite the difficulty in managing such a challenging data set, Table 6 indicates that our 
fully automatic KR + GTDP algorithm generated results with an error close to the inter-
observer variability (Dice coefficient of 0.78 versus 0.79). Furthermore, this was a significant 
improvement from previous algorithms developed by us, as our Normal GTDP method was 
tested on images without the significant pathology as seen on our DME data set. KR + GTDP 
classification of fluid-filled regions yielded the lowest Dice coefficient with errors similar to 
those shown in Fig. 9. In Fig. 9(a), false positives were detected near areas containing hyper-
reflective deposits. Since the training data set did not include images with these hyper-
reflective spots, the algorithm perceived these areas as “normal” and its surrounding regions 
as hypo-reflective, thus resulting in false positive classifications. Future versions of the 
algorithm can include the deposits as an additional class. Figure 9(b), in contrast, is a very 
dim image. Since the image contained a single hyper-reflective spot, the rest of the image 
remained dark after linear normalization. In future versions, the image can instead be non-
linearly normalized (e.g. histogram equalization) prior to using the DME classifier. Finally, 
Fig. 9(c) shows the algorithm’s tendency to identify more regions of the ONL as fluid 
compared to the grader. This may be partially due to the small training data set size of 12 
images. 

Classification-based GTDP segmentation includes embedded denoising which is 
advantageous for reducing the noise present within the classification feature vectors (Fig. 5). 
While many different denoising methods may be also used to reduce the noise, the exciting 
properties of KR include its direct estimation of the denoised first and second order 

derivatives ( 1β̂  and 2β̂ ), as well as the generation of locally-weighted kernels which can be 
used directly as features or reused for non-linear feature denoising. A limitation of KR is the 
dependence of parameter values on the image noise level. Thus in order to optimally denoise 
images of varying scan types, future versions of the algorithm should adapt the KR parameter 
values based on the estimated noise level. Adapting alternative image representation models 
such as sparsity-based techniques, shown to be very efficient in representing retinal OCT 
images [76], may also improve the performance and is part of our ongoing work. 

The need for GTDP segmentation is a limitation to this study, as the KR-based 
classification method was not sufficient to accurately identify retinal layers as a standalone 
method. While K-means clustering helped improve the classification of layers with varying 
thicknesses and positions (e.g. a thicker NFL on the nasal side versus a thinner NFL on the 
temporal side as shown in Fig. 4(b), the classified intraretinal layers did not merge at the 
fovea. Furthermore, three separate classifiers were required to achieve the final classification 
result. While l f+C  provided a balance in accuracy between the layer and fluid classifiers, lC  

generated the most accurate layer classifications and fC  achieved better fluid classifications 

but with more false positives. We therefore merged all three classifiers to achieve the best 
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possible classification result. Finally, since there was no hard constraint on layer ordering, 
Fig. 4(b) shows the OS-RPE layer sometimes appearing above the ISE. Nevertheless, the 
classification example shown in Fig. 4(b) shows that our method provides a significant 
starting point that is helpful in simplifying the GTDP search region step. Other more 
advanced classification methods (e.g. support vector machines) may also be implemented in 
place of our described method to possibly improve the classifier performance. 

The classifier features and weights shown in Fig. 6 and Table 5 provide insight into the 
characteristics that are important for fluid and layer identification. For example, the denoised 
intensity feature ( 1v ) was the most important feature for identifying fluid, likely due to the 
dark intensity exhibited by fluid. In contrast, for both cases where the classifier was required 
to identify layers, the vertical position within the retina ( 11v ) was most important. This is due 
to the layered nature of the retina. Adapting alternative image representation models such as 
sparsity-based techniques, shown to be very efficient in representing retinal OCT images [76], 
may improve the performance and is part of our ongoing work. 

Finally, our randomly selected validation data set did not include many images with 
subretinal fluid, a relatively uncommon feature in DME. Thus, its performance for such 
images is unknown. Furthermore, our algorithm does not yet distinguish between cystic and 
non-cystic fluid. Incorporating the ability to identify and categorize different types of fluid 
(e.g. subretinal, cystic, non-cystic) is a necessary step in our future work, as this will enable 
rigorous DME subtyping. While the correlation between DME subtype and response to 
therapy is still unknown, the potential clinical implications of personalized therapy and 
improved treatment outcomes are vast. 

10. Conclusion 

We developed a fully automatic algorithm to identify fluid and eight retinal layer boundaries 
on SD-OCT images with DME pathology. Results showed that our automatic algorithm 
performed comparably to manual graders. This is the first validated, fully-automated, and 
multi-layer segmentation method which has been applied to real-world, clinical images 
containing severe DME. Accurate identification of DME imaging biomarkers is extremely 
important, as it will facilitate the quantification and understanding of DME. 
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